ISRAEL JOURNAL OF MATHEMATICS 90 (1995), 167-188

LATTICE-EMBEDDING L? INTO ORLICZ SPACES

BY

FRANCISCO L. HERNANDEZ* AND BALTASAR RODRIGUEZ-SALINAS*

Departamento de Andlisis Matemdtico
Facultad de Matemadticas, Universidad Complutense, 28040-Madrid, Spain

e-mail address: pacoh@mat.ucm.es

ABSTRACT
Given 0 < a < p < B < oo, we construct Orlicz function spaces LF[O, 1]
with Boyd indices a and 3 such that LP is lattice isomorphic to a sublattice
of LF[0,1]. For p > 2 this shows the existence of (non-trivial) separable r.i.
spaces on [0, 1] containing an isomorphic copy of LP. The discrete case of
Orlicz spaces £F (1) containing an isomorphic copy of ¢7(T") for uncountable
sets I' C I is also considered.

Introduction

The symmetric structure of rearrangement invariant (r.i.) Banach function spaces
has been studied in the memoirs of Johnson, Maurey, Schechmann and Tzafriri
[J-M-S-T] and Kalton {K;] (see also [L-T3]). In ([K1] Theorem 3.2) Kalton proved
that if a r.i. Banach function space X on [0,1], without isomorphic copies of cp,
has a sublattice isomorphic to L![0,1], then X[0,1] is precisely L[0,1]. This
result is even valid replacing sublattice for subspace and was also obtained in
([J-M-S-T] Corollary 5.4) under a slightly stronger assumption.

One of the purposes of this paper is to analyze possible extensions of the above
result of Kalton ([K;]). We study, for 0 < p < oo, the existence of separable
r.i. function spaces X[0, 1] different from LP = LP[0, 1] having a sublattice which
is lattice isomorphic to LP. Obviously, the interest of this question consists
in considering separable r.i. function spaces for a probabilistic measure jointly
with the requirement of LP be lattice embeddable as a sublattice (so the usual
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isomorphic embedding of LP via p-stable random variables, for p < 2, is not useful
here). Moreover, in some cases the existence of an embedding of L? into X0, 1]
as subspace is equivalent to the existence of an embedding as sublattice (f.i. for
p > 2 and Orlicz spaces [J-M-S-T] p. 195; also for 1 < p < 2 [Ks] Theorem 10.9).

It is known that the answer to the above question is negative for the class
of Lorentz function spaces Ly 4[0,1] and Ly, ¢[0,1] for submultiplicative weights
(see Carothers [Cy], [Co]). Here we give a positive answer within the class of
separable Orlicz function spaces LF[0,1]. Thus the main result of Section II is
the following:

THEOREM A: Let 0 < a < p < 8 < 00. There exists an a-convex Orlicz function
space LT[0, 1] with indices o = a and BF = 3 such that LP is lattice-isomorphic
to a sublattice of L¥'[0, 1].

In general an a-convex Orlicz function space L¥[0,1] , different of L%, can-
not contain a subspace isomorphic to L for 1 < a # 2. This follows from
([J-M-S-T] Theorem 7.1). Thus the case p = a is solved in Section III removing

the a-convexity:

THEOREM A’: Let 0 < a = p < 8 < oo . There exists an Orlicz function
space LF[0,1] # LP with indices af¢ = a and 8% = 3 such that LP is lattice-
isomorphic to a sublattice of L0, 1].

In particular the spaces obtained in Theorems A and A’ for the case p > 2 are
(as far as we know) the first examples of non-trivial separable r.i. Banach function
spaces on [0, 1] containing a subspace isomorphic to LP. Also, Theorems A and
A’ for the case p = 1 show that the above Kalton result (K;] cannot be extended
to the class of r.i. quasi-Banach function spaces. The proofs depend on some
technical Lemmas and the built Orlicz spaces L¥[0,1] are rather sophisticated
(comparing with the spaces in the (0,c00) case [H-Rul).

The second aim of this paper concerns with a similar question but now in
the setting of Banach spaces X with an uncountable symmetric basis. Thus, we
analyze when the £P(T') spaces, for uncountable sets T, can be isomorphically
embedded into X.

In [T] Troyanski proved that if a Banach space X with a symmetric basis
(e:)ier contains an isomorphic copy of £!(T") for I' uncountable then X = ¢'(I).
Recently, in [H-T], it has been proved the impossibility of embedding ¢7(T")-spaces

for T' uncountable into any Lorentz space d(w, p, I) for any non trivial weight w
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and 0 < p < co. Here, we prove a positive result for the class of reflexive Orlicz
spaces £F(I), extending a previous result given in ([H-T], Proposition 7) for the
non-reflexive case. Thus, our main result in Section I is the following:

THEOREM B: Let 0 < a < p < 8 < oo. There exists an a-convex Orlicz space
¢F(I) with indices ar = o and Br = (3 containing a lattice isomorphic copy of
¢P(T') for any set T' C I.

Note that an a-convex Orlicz space ¢F'(I), different from £%(I), cannot contain
an isomorphic copy of £*(I). This follows from ([H-T], Proposition 5 and [R],

Corollary 2.4). Thus the case p = « is solved in Section III without a-convexity:

THEOREM B’: Let 0 < a = p < 8 < co. There exists an Orlicz space £F(I) #
¢P(I), with indices ap = « and B = 3, containing a lattice isomorphic copy of
¢P(T) for any set T' C I.

1. Proof of Theorem B

Before to give the proof of Theorem B let us give some definitions and notations.
Given a set I and an Orlicz function F, we denote by IF(I) the Orlicz space
consisting of all real-valued functions z(i) defined on I for which
Ty _ |z()|
o (5) -5 () <

for some A > 0, endowed vith the F-norm
. T
[lz]| = 1nf{/\ >0: mF(X) < )\}4

This F-norm is equivalent to the Luxemburg norm when F is convex.

If F satisfies the AJ-condition (i.e. there exists C > 0 and t;, > 0 such that
F(2t) < C-F(t) for 0 <t < tp) then the unit vectors (e;);c; are a symmetric
basis in ¢7(I). We refer to [T], [D] and [H-T)] for general properties of Banach
spaces and F-spaces with an uncountable symmetric basis (f.i. all symmetric
basis are equivalent).

In the countable case, the structure theory of Orlicz sequence spaces ££'(N) =
¢F has been extensively studied (cf. [L-T,], [L-T3]). For the uncountable case,
the necessary and sufficient conditions for the isomorphic embedding of Orlicz
spaces £9(T') into ¢F(I) for uncountable sets I' C I have been given recently in
[R] (see also [H-T}).
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Let us denote by £r; the set of all the Orlicz functions G which are equivalent
at 0 to a function

H(z) = /0 F]:‘(FS)dM(S) b<r<l)

where p is a probability measure on (0, 1]. It holds that £¥(I) contains a (lattice)

isomorphic copy of £(T") for uncountable sets I' C I if and only if G € ¥ P
The set F1is contained in Cr 1, up to equivalence, however in general is not

compact. The following properties of the sets 3 r1 Will be used: for every g > 0,

29 g1 = 3 sepy, and, if Fy denotes the g-convexification of the function F (i.e.
Fy(x) = F(x7)) then

Zm = (Em)q = {Gq: Ge Zm }

In the proof of Theorem B we need the following three Lemmas:
LEMMA 1.1: There exists two sequences (a,) and. (6,) of 0’s and 1’s numbers
such that
oo oo oo
Yan=00, Y anbap=1, and Y anbui < (k+2)°
=0

n=0 n=k
for every k € N = {0,1,...}.
Proof: This is a consequence of Lemma 8 in [H-T]: There exists two increasing

sequences of natural numbers (m;) and (k;) such that (m;4+1 —m;) — oo and the
function

f@) =D Ximimern) (@)
=0

satisfies

S flr+k)=1
i=0
for every = > 0. Moreover, it follows from (22) in [H-T] that

if(ki —k) < (k+2)°
=0

for every k = 1,2,.... Then, if we take ay, = 6, =1 for ¢=0,1,2,... and
a; = é; = 0 in the other cases, we have

ian = 00, ian6n+k =1 and i 0nbn_k < (k+ 2)2.
n=k

n=0 n=0

for every k € N. |
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LEMMA 1.2: Let € > 0. There exist two sequences {«,) and (e,) of positive

numbers such that

E 0n, =00 and €, < Cénta
n=0

forn € N and ¢ = 2¢ > 1, verifying
>0
A S Z Qn€ntk S B
n=0
for every k € N and where A and B are positive constants.

Proof: We apply Lemma 1.1, Let M = {m;: i=0,1,2,...} (mg =1),

i-1
= (M +i\ [ J(M +3)
7=0
and -
ax = Z Qi < (k+2)2
n=k
for k =1,2,.... Let us define the sequence (e,)5% by €g = 0, and
_ 1 fne M= M,
“ T\ ek =b,_peF ifne M.

o0
It is clear that ) &, = oo and €, < c €,41 (R € N) as well as
n=0

00
Z Qnéntk = 1
n=0

for every k € N.
On the other hand,

=} oo
Sonean =Y. T utrrn
n=0

1=0 n+keEM;

Now, as

DIDIETNIES 3 SLTu) pE N

=0 n+-k€EM; 1=0 n=0 1=0
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and
o0
n+k—-z _ ik
Y Y aen< Y Ya = D o
i=k+1n+keM; i=k+1 n i=k41
o0 . oo 2
<& U
- 1€ 216
=1 i=1
we deduce -
1 i+2)?
Zanem.k 2_6-{-2( 21‘5) =B <o
n=0 1=1
which concludes the proof. |

LEMMA 1.3: Let ¢, = (k4 1)* for k € N. There exists two sequences (a,) and
(en) of positive numbers such that

o0

Z ap, =00 and €, < Cp€nyk

n=0
for n,k € N, verifying
o0
A< Z Anénik < B
n=0

for every k € N, and where A and B are positive constants.

Proof: We proceed as in Lemma 1.2, defining now the sequence (€,)2., by
€o = 0, and

(1 ifne M= M,
Tt =2t ifne M

It is clear that ) 27 ) an = 00, €n < Ck€pnyr (0 € N) and

o
Z On€ntk > 1

n=0

for every k € N. Now, the upper inequality follows from

)PP DIEINED 3 JLUTES SERRS

=0 n+keEM; =0 n=0 i=
and
o0 @ x o0 s x
n n+ —1 g -
O S g I
i=k+1n+keM; i=k+1 n i=k+1 °
o0 o0

a "

o =
i=1 " i=1
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Proof of Theorem B: We will consider three cases:

(i) First the case & = 1 < p < 3 < co: We will find a convex Orlicz function
F with indices ap = 1 and Br = 3 = (p + ¢€) such that ¢F(I) contains an
isomorphic copy of ¢P(I).

We will make use of Lemma 1.2: let f be the function defined by

= Z €nX(2-(n+1) 2-2)(T) (0<z<1)

and we consider the convex function F(z) given by

F(x) = /Or(x — )P f(t)dt

for 0 < z < 1. Using Lemma 1.2 we have

ASY anf(5) < B
n=0

for 0 < 2 <1 . This implies by integration and the Beppo-Levi Theorem that

AzxP zP
* S — a,2P"F <B—
*) p(p_l)—Z (%) <%y
for0<z<1.
Since
1 > 27"
F(Z_"> = ka /2—k_1(2_ )P~ 2dt = ZekZ (P=Dk (2= — p27k),
k=n k=n
with 1)
1—2-(- 1—2P
ag= ——r and b= 2 ,
p-1 p
we deduce
(+%) PR =) (a-b27F)2m Pk,
k=0

Let us show that the lower index ar = 1. It is enough to check that

su 2an(2—m_")
m,g F(2—m)

= o0
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for every ¢ > 1. Indeed, for m = m; — n > m;_; we have using (**) that
2P(MF1) P(27™7™) > (4 — b)epmgn = (a — b)

and

o0
€
™ (g __fm $ —(p=1)(ntk)
2PME(27™) < a(l — oD + k_oemi+k2 P )

a
7 —(p—1)n
< 1_2_(17_1)(Gm+2 )

with ¢,, — 0 for i — oo and n fixed. Then

22T e b(l _ 2—(P—1))2(q—1)n

YT Fem) e
and
aup 2o FETT)
e Fm

Let us see now that Br = p + € (and hence F satisfies the A3-condition). It

follows from (xx) that

o0
9—-(p—1)k m
27PMF(27™) a  §=0 e <2 gen
F(2=m=n) Ta-b 2 270D e e
:O

so we deduce that 8r < p + ¢. In order to show the converse inequality, let us

consider m = m; < m;+; —n. Then

(% * %) 2PME(27T™) > (a—b)em =a —b
and a
p(m+n) —m-—n = —(p—1)mip1
PHI Q) Sty (emtn +2 )
a

_ —en —{p—1)m;41
= e (T 2 ).

Hence, making i — oo , we find

2PF(QT™) a-b

1 —27{P~Dygen,
Famm) 2 ¢ )

sup
m

which implies that S > p+ €. Thus Sr =p+e.
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Finally, it remains to show that £5(I) contains a subspace isomorphic to £°(T")
for T' uncountable. (The countable case is well-known: [L-T3], Theorem 4 a
8.) Indeed, if p denotes the discrete measure on (0,1] defined by p(2™") =

an,2P" F(27"), we consider the function

1
Glz) = /0 F;ég)du O<z<1)
Then, by (), the function G is equivalent to P at 0, so 2P € g and, using
Theorem B of [R] (or [H-T], Proposition 5), we conclude that ¢F(I) contains an
isomorphic copy of £°(T").

(ii) The case « = 1 < p = f# < 0co. We proceed as in the above case but now
using the sequence (¢,) of Lemma 1.3 in order to define the functions f and F:
In the same way as above it is proved that ap =1 and 2P € } 1.

Now it holds that 3¢ = p. Indeed, using that €, < cxénik, We have
™ 9= (p—Dk¢,_
2—pnF(2“m) a kgo Emtk

FZ™ ") “a-b&
( ) a k¥02—(p—1)k€m+n+k

a
< 4
_a_b(n+1),

which implies that 8 < p , hence Bp =p .

(iil) The general case 0 < @ < p < 8 < oo. It follows from the above cases (i)
and (ii) that there exists a convex Orlicz function F with indices ap = 1 < p/a <
Br = B/a such that ¢F(I) contains an isomorphic copy of £9(I') for ¢ = p/a.
Now, if we consider the a-convex function Fo(z) = F(x®), we get easily, using
the properties of the sets Xz, 1 and ([R], Theorem A, or [H-T], Proposition 5),
that ¢F=(I) verifies ap, = @ < Op, = 3 and £F=(I) contains an isomorphic copy
of ¢P(T). n

Remark: Given an Orlicz space £7'(I), we consider the index vr defined by

— log F(27™)
= Tm 2\ J
TP log2-"
It holds that arp < vr < Bp . It follows from ([R], [H-T]) that if £4(T) is
isomorphically embedded into ¢7'(I) for I' C I uncountables, then ap < ¢ < vr .
Note that the Orlicz spaces £ (I) constructed in Theorem B verify v = p .
This follows easily from inequality (x x *).
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Remark: In the non-locally bounded case the above Theorem is also true: given
a=0<p< < oo there exists £(I) with ap = 0 and Br = 3 such that ¢F(I)
contains a subspace isomorphic to ¢°(T’).

The proof is similar to Theorem B considering now the function

F(z) = /Oz tPlf(tdt, 0<z<1,

where

flt)= Z €nX(2-n-1,2-7(t),

n=0

and using now ([H-T], Proposition 5 (ii)).

2. Proof of Theorem A

Our notation in this section is standard and we refer to [L-T3).
Given an Orlicz function F, let us denote by Y7, the set of all Orlicz functions
G which are equivalent at co to a function

H(z) = /000 F;é? du(s), for z > 1,

where y is a probability measure on (0,00) satisfying

* du(s)
/o F(s) =

The following criteria given in ([J-M-S-T], Theorem 7.7) for lattice-embeddings

of function spaces into a convex Orlicz space X = LF[0, 1] (as sublattices of type
X,) holds also in the quasi-Banach case (see [H-Ru]).

PROPOSITION 2.1: Let LF[0,1] be an Orlicz space with 0 < a® < 8% < co. If
G € Y, then LE(0,1] is lattice-isomorphic to a sublattice of L¥[0, 1].

The set 2?1 is contained in Cg’, up to equivalence, but in general is not
compact. For any ¢ > 0 it holds that 370, = %) 7, and 22,1 =(F)q
where Fy is the g-convexification of the function F' at co.

In the proof of Theorem A we need the following:
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LEMMA 2.2: Let € > 0. There exists two sequences (o) and (e,) of positive
numbers such that

oo
E o, =00 and €,41 < cep

forn=0,1,2,... and ¢ = 2° > 1, verifying
A S Zanfn+k S B
n=0

for every k =0,1,2,... and A and B positive constants. Furthermore, for every
p>0,

(+) > o

n=0

l\’)lQ

n
Z 2Pke, < 0.
k:

Proof: Let us apply Lemma 1.1: Let M = {m;:i=0,1,...} with (m;1—m;) —
oo and

i-1
M= M-\ [ J(M -

=0
for i =1,2,.... Let us define the sequence (e,) by

(1 ifneM= M,
L c‘k=6n+kc"“ if n € My.

It is clear that if we take (a,) as in Lemma 1.1 we have
Zan =00, €ny1 < cey forn=0,1,... and
Zanen+k >1=A forevery k=0,1,2,....

n=0

On the other hand,

Zanfn+k—z Z Qn€nitk

1=0 n4+-kEM;
00
3 i C
S§ E an6n+k+i01:§ = =B <
‘ 4 c—1
=0 n=0 1=0

for every k =0,1,....
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We pass now to show (+). Let {k;: ¢ = 0,1,...} = {n: a, = 1}. For fixed
k; € N, let us consider

m; = max{m;: m; < k;} and s; = min{m;: m; > k;}.

Then

S 2n S grkg, < igj,:(zzm Zzpkek)

n=0 k=0 =0 ri+1
1 i 1 1 = 1
=1 =277 £ p(ki-ri) 1_2_,,;05,_ki
1 °°(n+2) 1 1
"1—2—10712:% 2pn +1_2PZO—<°°

since from >0 ) anb,_x < (k+2)% (Lemma 1.1), it follows that there are at most
(n+2)? values of ¢ such that k; —r; = k; —m; = n, and, from Y oo ; @nbnik = 1,
there is at most one value of ¢ such that s; — k; = m; — k; = n. This concludes

the proof. |

LEMMA 2.3: Let ¢ = (k+1)2 for k € N. There exists two sequences (a,) and
(en) of positive numbers such that

E o, = oo and €ntk < Crén

for n,k € N, verifying
0
A S Z On€ntk S B
n=0
for every k € N, and A and B positive constants. Furthermore, for every p > 0,

Zzzm ZZ”kek < 00.

TL_
Proof: Tt is similar to Lemma 2.2 considering now the sequence (e,)3%, defined

by
_J1 ifne M= M,,
€n = Ck_l = 6n+k/ck if n € M.

Proof of Theorem A: It is sufficient to consider the case @ = 1 < p < # and
F convex, since the general case can be deduced from this by considering the

a-convex function F,(z) = F(x®) and Proposition 2.1.



Vol. 90, 1995 LATTICE-EMBEDDING LP INTO ORLICZ SPACES 179

(i) Let a =1 < p < 3 =p + €. We define the function f on [1, 00), by

= Z 677.)((2"—1,2"](37)7
n=1
where (e, ) are as in Lemma 2.2, and the convex function F(z) is defined by
F@):l+/(m—ﬂﬁ”f@ﬁ
1

for x > 1. It follows from Lemma 2.2 that the function f satisfies

A< ianf(Q"x) <B

n=0

for x > 1. Now, integrating and using the Beppo—-Levi Theorem we get

| > an n P71 -1
A—p—T <> m;(F'(2 z) - F'(2")) < B——7p
n=0

p—1
for x> 1.
It holds that -
Qp I (on
ZO oo F(27) <00

Indeed, this follows from Lemma 2.2 and the equality

I p—2
2;2@4MF( )= %PU"E:A )
_Ny O €k_op-1)k -(p-1)
_E: 2(P~Dk(1 _ 9=(-1)y,
—1)n Z _
—= 2(p-1) P p 1
Thus, for z > 1 we have
P S 9 pongy < BE 4y
p— 1+a0_202(13—1)n (2"z) < po1
and
‘ zP . .
Aoy tasrta s Z S [F(2x) - F(2")

Iy boz + b
< B—"—— 4 box +
plp—1) " !
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where ag, a1, bp and b, are constants.

It holds also that
E
2pn

n=0
Indeed,
o O > 2 Z 2
ngq/l PA ) ft)dt<z2(p l)n/ P2 f(t)dt
n=0 n=0
—Z = F'(2") < o0.
— 2p 1)

Hence we deduce that there exists constants Ag, By > 0 such that F satisfies

[e}
a
— P _n n
(-) Aoz <> o F(273) < Boa?
n=0
for x > 1.
Let us deduce now that L¥[0, 1] contains a sublattice lattice-isomorphic to LP.

Indeed, if 4 is the discrete measure on [1, 00) defined by
a2 PR F(2F
u(zh) = 2 TN
> 2P F(27)

n=0

we get from (—) that the function

Glz) = /1 ” P;(z”tt)) du(t), forz>1,

is an Orlicz function equivalent to zP at co. Now, as F' satisfies the A3°-condition

(we prove it below), we can apply Proposition 2.1 to conclude that LP is lattice
embedded into L¥[0, 1].
We pass to compute the associated indices to F. Since

F F =1+ zn:/z (2" — )P 2f(t)dt =1 + Xn:ekzﬂ’-l)k(az" — b2k)
k=172

k=1
where a = (1 —2~®=1)/(p~1) and b = (1 — 27P)/p, we have
m+n m+n
i e, 2P~ DR (g2mEn — p2k) > 20Dk
F(2™*) a
< S — 1+

k=1 k»m-{-l
gnF(2m) =

Z ekZ(P_l)k
k=1

m
2" Y e 2P~k (q2m — h2k)
k=1

m4n

> ex2(P—1)k
a (1 + k=m+1 )

,\

%
X
IA

a—b 2(p—1)me
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Now, let us prove that a%° = 1. Indeed, taking m = m; and n < m;y1 — m;,
we have using (¥%) that

m<4n

€ 2(7’_1)":
F(2mtr) <2 (14 k:§+1 k e (14 2(p=1)n .
2"F(2m) ~a—b 92(p—1)m = a—b 1 _ 9—(p—1) ‘™mtn |-
This implies that
.. F@mtr) 2
inf <

m  F(2m) Ta-b

since €,,,4n — 0. Hence
inf ———= =
mmn 29" F(2™)
for every ¢ > 1, which means that o = 1.
Finally, let us prove that SF = p+ € = (3, and hence F satisfies the AS°-
condition. First let us see that 8 < p + e. Indeed, from (¥%) we get for ¢ = 2¢

that

F(om+n 2(p—1)n n
(2m+m) a (1+ c )

<
2°F(2™) ~a—b 1—c!

and

F@™")  a ( 1 gen )

@) S a—b\2e-Dn T 12
And this implies that 3% <p+e.

Let us prove now the converse §% > p+e. By using (¥) with m = m;41 —n >
m; we have

(m) F(2n+m) -1> 2(p—1)(m+n) (a _ b)2m+n

and

m
F2™) -1< ) e2Dkgam
k=1

< a2m(2 2(P=Dk 4 Z ek2(’”_1)k>
k=1

k=m;+1
< a2™(1 - 2—(1’—1))—1(2(1’—1)"1; + €m2(p_1)m).

Hence

m+4ny __ _
F(2 ) 1 Z a b(1_2—(p—1)) '
F(zm) -1 a 9=neap-1)m 1 2lp-Drm:

2(p—1)(m+n)on
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Now, making i — oo we have

F@™m™y _ a—1b
Sﬁp F(2m) > ( a

)(1 _ 2—(P—1))2(p+6)n_

And this implies that 33° > p+ ¢, hence ¥ =p +e.

(ii) The case a =1 < p = § < c0. We proceed as in the above case using now
the sequence (¢,,) of Lemma 2.3 in order to define the functions f and F. In the
same way as above it is proved that af = 1 and zP € £%,. It holds also that
8% = p. Indeed, using that e,+x < cie,, we have

m+4n

2P~ 1)m
F(2mtn) < 0 (1+ k=%+l )
2°F(2m) “a-b 2(p-1ime
m<4n
a
(p—1)(k—m)
< = b(l +cp Z 2 )
k=m+1
a 2(p=1ne
< 1
- a—b( + 1-2-7 7’
which implies that §g° < p, hence 8r = p. |

Remark: In the special case of p = 1, Theorem A proves that there exist r.i.
quasi-Banach function spaces X [0, 1] containing a sublattice isomorphic to L!.

(Compare with the convex case [K1], Theorem 3.2.)

3. Proof of Theorems A’ and B’

Proof of Theorem B’: We can only consider w.l.o.g. 1 <a=p< g < o0.
(i) The case 1 < a = p = < 0o. Let (a,) and (€,) be as in Lemma 1.3. We

consider
<

€, = Z Stk where c = (k + 1)%.
k=0 Ck

Then €, < cre), +r and there exists positive constants A’ and B’ such that

[e o)
A<D ane < B

n=0

for ke N . Let

o0

f(z) = Z f:zX(z—(nH),z—"](w)

n=0
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for0 <z <1, and
Flz) = / (z — P2 (1)dt
[}

It holds that for 0 <z < 1,

P > x z?
A < ap2P"F(—=) < B'———,
) 21 S () < B
which implies, by using ([R], Theorem B or [H-T], Proposition 5), that £7(I)
contains an isomorphic copy of £°(T') for I’ uncountable.
Let us show that ap = p = 8p. Like in Theorem B we have

o
(1) TR =) (a—b27F)2 (PR L,
k=0
and
o 2= (p—1)k ¢
2PTLF(2—m—n) a kgo m+n+k a 4
Fz=™) “a-b = S AR
. o k=0 2-(p=Dkel ‘T -
since -
67'n+'n+k: Em+ntk 1 /
Y = T Cnin-
Z Cntk kZO Ck Cp +
Hence ap > p, so ap = p. Also, from (fif}) it follows that
— 2—(p—1)k ’
2P (27™) a kZ_-:o Emth 4
Fz—") =g S AU
2202 (- ke, Cm+tntk

which implies 8r < p, hence 8 = p

Finally, let us note that the constructed function F' is not equivalent to zP at
0. Indeed, it follows from (§) and }_ @, = co that lim 2P"F(27™) = 0.

(ii) The case 1 < @ = p < f < o0. We procg;iooas in the above case but
considering now (ay,) and (e,) as defined in Lemma 1.2.

Let

oo €k
€, = Z Z: ,  where ¢, = (k +1)2.
k=0
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Then €, < 2¥¢/, 4 for € = (B — p), and there exist positive constants A’ and B’
such that

oo
AI S Zand&k S B,

n=0
for k € N. Let -
f(z)= Z f@X(z—(n+1),2—n]($)
n=0
and

F(z) = / x(x — P2 f(t)dt

for 0 < z < 1. Reasoning as in (i) we get that £¥(I) contains an isomorphic copy
of £P(T') for uncountable I', and also that ap = p.
Finally, let us show that 8r = (p + €). Since

2P F(2 Z(a — b2 k)2 (P Dk,
we have -
9—(p—1)¢
2R & e,
F@2™ ") “a-b& ,_(_ “a-b" "’
( ) 102—;02 {p l)kel'm-{»'n-l—k

which implies that F is (p + €)-concave and 8 < (p + €). Now for m = m; <
m;41 — n we have
2PmF(27™) > (@ —b)e,, > a—b

and -
2p(m+n)F(2~m——n) < azdm+n+k2_(p—l)k
k=0
oo
<a€, Z k2 P VR =glel .
k=0
Hence

27PRE(2T™ -b 1
sup ( )> su 2

> II2€7L
m F(2_m_n) - m=m; a’ - 4

where a” is a positive constant, since

,-_H—m—n—l

1 1 1
< 9—€n - — g—en .
m+n 2 2_: Ck + Z ck - - Ck
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And this implies that 8r > (p+¢€) , s0 Op = (p + €). ]

Proof of Theorem A: Let 0 < a<p < G <r < o0, we consider ag =7 — 3,
po =7 —pand By = r—a. It follows from Theorem B’ that there exists an Orlicz
function Fy with indices ar, = ag, Br, = 0y such that the function
Y Fo(at
Gota) = [ T dua)

for 0 < z < 1, is equivalent to zP° at 0, where pg is a probability measure on
(0,1]. Since r > [, we can assume w.l.o.g. that Fy(st) > s"Fy(t) for 0 < s,
t<1.

We consider now the non-decreasing function ¥ defined by
1
F(x) = a:TFO(—), forx > 1.
x

It holds that aF =7 - fy=a and 8P =r —ag = f.

Furthermore, the function G(z) = z"Go(z7!) for x > 1 verifies

o) = [~ Eaute (> 1),

where 4 is the probability measure on [1,+00) defined by u(t) = po(3), and G
is equivalent to the function "~P° = 2P at co. Hence zP € Z}’,f:l and, by Propo-
sition 2.1, we conclude that LP is lattice-isomorphic to a sublattice of L¥[0,1].
1

Note that the above proof can be also used in proving partially Theorem A.
Given an Orlicz space LF[0, 1] we consider the index 7§ defined by

log F(2™
v = Hm log F£(27)

n—oo  log2™
It holds that o < v < B% . Let us denote by Q% the set of ¢ > 0 such

that L9 is isomorphically embedded into L¥[0,1]. It follows from ([J-M-S-T],
Theorem 7.1) that if o > 1, then

QF C [v7, B v u {2}.
And in the case of v§ < 2 we have, by using ([J-M-S-T], Proposition 8.9), that
(F,2 CQF.

Thus, as a direct consequence of Theorems A and A’ and inequality (¥ % *) we
have the following:
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COROLLARY 3.1: Let 1 < a < p < 8 < 2. There exists an Orlicz function space
LF[0,1] with indices a¥ = a, ¥ = p and ¥ = (3 such that Q¥ = [y, 2.

Notice that in the above result the isomorphic embedding of L? into L]0, 1]
for p = v§° cannot be obtained using ([J-M-S-T|, Proposition 8.9). Indeed, the
function t=1/? ¢ L¥[0,1] since

°°F 1 < F(2")
/ p+1 Q’Z
1 =

and this series is divergent because lim F(2")/2"7 > 0.
n-—oo

The constructed Orlicz spaces L¥[0,1] having a sublattice isomorphic to L?
for p > 0 verify zP € Z:l, so the inclusion map LP[0,1] — L¥[0,1] holds.
This suggests asking whether there exists any sublattice of L¥[0,1] where the
norms || ||r and || ||, are equivalent: in other words, whether the inclusion map
LP[0,1) — LF[0,1] is or is not disjointly strictly-singular. Recall that an operator
T from a Banach lattice E to a Banach space is disjointly strictly-singular
([H-R], p. 48) if there is not a disjoint sequence of non-null vectors (z,) in E
such that the restriction of T to the span [z,] is an isomorphism.

ProOPOSITION 3.2: Let LF[0,1) be a Orlicz space different from LP with
0 < af < B <oo. IfzP € Y7, then the inclusion map LP[0,1] — L¥[0,1] is
disjointly strictly-singular.

Proof: From 2P € E;‘fl and the A$°-condition we get that there exist positive
constants A and B and a positive sequence (o) such that

+o0
AxP < ZanF(T'x) < BxP

forz>1,and Y.7% a, < 0o.

We claim that Z ~00n2P" = oo0. Indeed, assume that E —o @n2P" < oo.
Then, for M > 0 verifying F(z) < Mz?P at oo, there exists m € M such that
Yo @n 2P < A/2M, and hence

m o0 m A
Az?P < ZanF(T‘z) +M Z ap2P"zP < ZanF(T"x) + ’2‘wp

—~o00 m+1 —00
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for £ > 1. Hence .
gx” < (gan)F(Zmz)

for x > 1, which implies that F ~ zP at oo, a contradiction.

Now, for any constant C > 0 there exists an integer m such that

CZ a, F(2"z) < CBz? < Zan(Z"x)p
n=0 0

for any £ > 1. And, using Proposition 3.2 (b) in ([H-R]) which holds also for
p < 1, we conclude that the inclusion LP[0,1] — LF(0,1] is disjointly strictly-

singular. |

In particular if o > 2 and L[0,1] contains an isomorphic copy of L? for
p # 2, then the inclusion map LP[0,1] — L¥[0,1] is disjointly strictly-singular.
This follows from the above Proposition and Theorem 7.7 in [J-M-S-T].

Remark: For a fixed Orlicz space LF'[0, 1], let Pg° be the set {p > 0: 2P € Z}ol}
It would be interesting to know the structure of the sets Pg°.
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